Angle

From Wikipedia, the free encyclopedia

Jump to: navigation, search
"∠", the angle symbol.

In geometry and trigonometry, an angle (in full, plane angle) is the figure formed by two rays sharing a common endpoint, called the vertex of the angle. The magnitude of the angle is the "amount of rotation" that separates the two rays, and can be measured by considering the length of circular arc swept out when one ray is rotated about the vertex to coincide with the other (see "Measuring angles", below).

The word angle comes from the Latin word angulus, meaning "a corner". The word angulus is a diminutive, of which the primitive form, angus, does not occur in Latin. Cognate words are the Latin angere, meaning "to compress into a bend" or "to strangle", and the Greek ἀγκύλος (ankylοs), meaning "crooked, curved"; both are connected with the PIE root *ank-[1], meaning "to bend" or "bow".

Contents

  • 1 History
  • 2 Measuring angles
    • 2.1 Units
    • 2.2 Positive and negative angles
    • 2.3 Approximations
  • 3 Types of angle
  • 4 A formal definition
    • 4.1 Using trigonometric functions
    • 4.2 Using rotations
  • 5 Angles between curves
  • 6 The dot product and generalisation
  • 7 Angles in Riemannian geometry
  • 8 Angles in geography and astronomy
  • 9 References
    • 9.1 Notes
    • 9.2 On-line resources
  • 10 See also
  • 11 External links

[edit] History

Euclid defines a plane angle as the inclination to each other, in a plane, of two lines which meet each other, and do not lie straight with respect to each other. According to Proclus an angle must be either a quality or a quantity, or a relationship. The first concept was used by Eudemus, who regarded an angle as a deviation from a straight line; the second by Carpus of Antioch, who regarded it as the interval or space between the intersecting lines; Euclid adopted the third concept, although his definitions of right, acute, and obtuse angles are certainly quantitative.

[edit] Measuring angles

The angle θ is the quotient of s and r.

In order to measure an angle θ, a circular arc centered at the vertex of the angle is drawn, e.g. with a pair of compasses. The length of the arc s is then divided by the radius of the circle r, and possibly multiplied by a scaling constant k (which depends on the units of measurement that are chosen):

 \theta = k\frac{s}{r}

The value of θ thus defined is independent of the size of the circle: if the length of the radius is changed then the arc length changes in the same proportion, so the ratio s/r is unaltered.

In many geometrical situations, angles that differ by an exact multiple of a full circle are effectively equivalent (it makes no difference how many times a line is rotated through a full circle because it always ends up in the same place). However, this is not always the case. For example, when tracing a curve such as a spiral using polar coordinates, an extra full turn gives rise to a quite different point on the curve.

[edit] Units

Angles are considered dimensionless, since they are defined as the ratio of lengths. There are, however, several units used to measure angles, depending on the choice of the constant k in the formula above.

With the notable exception of the radian, most units of angular measurement are defined such that one full circle (i.e. one revolution) is equal to n units, for some whole number n (for example, in the case of degrees, n = 360). This is equivalent to setting k = n/2π in the formula above. (To see why, note that one full circle corresponds to an arc equal in length to the circle's circumference, which is 2πr, so s = 2πr. Substituting, we get θ = ks/r = 2πk. But if one complete circle is to have a numerical angular value of n, then we need θ = n. This is achieved by setting k = n/2π.)

θ = s/r rad = 1 rad.

[edit] Positive and negative angles

A convention universally adopted in mathematical writing is that angles given a sign are positive angles if measured counterclockwise, and negative angles if measured clockwise, from a given line. If no line is specified, it can be assumed to be the x-axis in the Cartesian plane. In many geometrical situations a negative angle of −θ is effectively equivalent to a positive angle of "one full rotation less θ". For example, a clockwise rotation of 45° (that is, an angle of −45°) is often effectively equivalent to a counterclockwise rotation of 360° − 45° (that is, an angle of 315°).

In three dimensional geometry, "clockwise" and "counterclockwise" have no absolute meaning, so the direction of positive and negative angles must be defined relative to some reference, which is typically a vector passing through the angle's vertex and perpendicular to the plane in which the rays of the angle lie.

In navigation, bearings are measured from north, increasing clockwise, so a bearing of 45 degrees is north-east. Negative bearings are not used in navigation, so north-west is 315 degrees.

[edit] Approximations

[edit] Types of angle

Right angle.
Acute (a), obtuse (b), and straight (c) angles. Here, a and b are supplementary angles.
Reflex angle.
The complementary angles a and b (b is the complement of a, and a is the complement of b).

[edit] A formal definition

[edit] Using trigonometric functions

A Euclidean angle is completely determined by the corresponding right triangle. In particular, if θ is a Euclidean angle, it is true that

\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}

and

\sin \theta = \frac{y}{\sqrt{x^2 + y^2}}

for two numbers x and y. So an angle can be legitimately given by two numbers x and y.

To the ratio \frac{y}{x} there correspond two angles in the geometric range 0 < θ < 2π, since

\frac{\sin \theta }{\cos \theta } = \frac{\frac{y}{\sqrt{x^2 + y^2}}}{\frac{x}{\sqrt{x^2 + y^2}}} = \frac{y}{x} =  \frac{-y}{-x} = \frac{\sin (\theta + \pi)}{\cos (\theta + \pi) }

[edit] Using rotations

Suppose we have two unit vectors \vec{u} and \vec{v} in the euclidean plane \mathbb{R}^2. Then there exists one positive isometry (a rotation), and one only, from \mathbb{R}^2 to \mathbb{R}^2 that maps u onto v. Let r be such a rotation. Then the relation \vec{a}\mathcal{R}\vec{b} defined by \vec{b}=r(\vec{a}) is an equivalence relation and we call angle of the rotation r the equivalence class \mathbb{T}/\mathcal{R}, where \mathbb{T} denotes the unit circle of \mathbb{R}^2. The angle between two vectors will simply be the angle of the rotation that maps one onto the other. We have no numerical way of determining an angle yet. To do this, we choose the vector (1,0), then for any point M on \mathbb{T} at distance θ from (1,0) (on the circle), let \vec{u}=\overrightarrow{OM}. If we call rθ the rotation that transforms (1,0) into \vec{u}, then \left[r_\theta\right]\mapsto\theta is a bijection, which means we can identify any angle with a number between 0 and .

[edit] Angles between curves

The angle between the two curves is defined as the angle between the tangents A and B at P

The angle between a line and a curve (mixed angle) or between two intersecting curves (curvilinear angle) is defined to be the angle between the tangents at the point of intersection. Various names (now rarely, if ever, used) have been given to particular cases:—amphicyrtic (Gr. ἀμφί, on both sides, κυρτόσ, convex) or cissoidal (Gr. κισσόσ, ivy), biconvex; xystroidal or sistroidal (Gr. ξυστρίσ, a tool for scraping), concavo-convex; amphicoelic (Gr. κοίλη, a hollow) or angulus lunularis, biconcave.

[edit] The dot product and generalisation

In the Euclidean plane, the angle θ between two vectors u and v is related to their dot product and their lengths by the formula

\mathbf{u} \cdot \mathbf{v} = \cos(\theta)\ \|\mathbf{u}\|\ \|\mathbf{v}\|.

This allows one to define angles in any real inner product space, replacing the Euclidean dot product · by the Hilbert space inner product <·,·>.

[edit] Angles in Riemannian geometry

In Riemannian geometry, the metric tensor is used to define the angle between two tangents. Where U and V are tangent vectors and gij are the components of the metric tensor G,

 \cos \theta = \frac{g_{ij}U^iV^j} {\sqrt{ \left| g_{ij}U^iU^j \right| \left| g_{ij}V^iV^j \right|}}.

[edit] Angles in geography and astronomy

In geography we specify the location of any point on the Earth using a Geographic coordinate system. This system specifies the latitude and longitude of any location, in terms of angles subtended at the centre of the Earth, using the equator and (usually) the Greenwich meridian as references.

In astronomy, we similarly specify a given point on the celestial sphere using any of several Astronomical coordinate systems, where the references vary according to the particular system.

Astronomers can also measure the angular separation of two stars by imagining two lines through the centre of the Earth, each intersecting one of the stars. The angle between those lines can be measured, and is the angular separation between the two stars.

Astronomers also measure the apparent size of objects. For example, the full moon has an angular measurement of approximately 0.5°, when viewed from Earth. One could say, "The Moon subtends an angle of half a degree." The small-angle formula can be used to convert such an angular measurement into a distance/size ratio.