Checked content

File:Venn0111.svg

Summary

One of 16 Venn diagrams, representing 2-ary Boolean functions like set operations and logical connectives:

Logical connectives Hasse diagram.svg
About this image


Operations and relations in set theory and logic

 
c
          
A = A
1111 1111
 
Ac \scriptstyle \cup Bc
true
A ↔ A
 
\scriptstyle \cup B
 
\scriptstyle \subseteq Bc
A\scriptstyle \LeftrightarrowA
 
 
\scriptstyle \supseteq Bc
1110 0111 1110 0111
 
\scriptstyle \cup Bc
¬A \scriptstyle \or ¬B
A → ¬B
 
\scriptstyle \Delta B
\scriptstyle \or B
A ← ¬B
 
Ac \scriptstyle \cup B
 
A \scriptstyle \supseteq B
A\scriptstyle \Rightarrow¬B
 
 
A = Bc
A\scriptstyle \Leftarrow¬B
 
 
A \scriptstyle \subseteq B
1101 0110 1011 1101 0110 1011
 
Bc
\scriptstyle \or ¬B
A ← B
 
A
\scriptstyle \oplus B
A ↔ ¬B
 
Ac
¬A \scriptstyle \or B
A → B
 
B
 
B =
A\scriptstyle \LeftarrowB
 
 
A = c
A\scriptstyle \Leftrightarrow¬B
 
 
A =
A\scriptstyle \RightarrowB
 
 
B = c
1100 0101 1010 0011 1100 0101 1010 0011
¬B
 
 
\scriptstyle \cap Bc
A
 
 
(A \scriptstyle \Delta B)c
¬A
 
 
Ac \scriptstyle \cap B
B
 
B\scriptstyle \Leftrightarrowfalse
 
A\scriptstyle \Leftrightarrowtrue
 
 
A = B
A\scriptstyle \Leftrightarrowfalse
 
B\scriptstyle \Leftrightarrowtrue
 
0100 1001 0010 0100 1001 0010
\scriptstyle \and ¬B
 
 
Ac \scriptstyle \cap Bc
\scriptstyle \leftrightarrow B
 
 
\scriptstyle \cap B
¬A \scriptstyle \and B
 
A\scriptstyle \LeftrightarrowB
 
1000 0001 1000 0001
¬A \scriptstyle \and ¬B
 
 
\scriptstyle \and B
 
 
A = Ac
0000 0000
false
A ↔ ¬A
A\scriptstyle \Leftrightarrow¬A
 
These sets or statements have complements
or negations. They are shown inside this matrix.
These relations are statements, and have negations.
They are shown in a seperate matrix in the box below.




PD-icon.svg This file is ineligible for copyright and therefore in the public domain, because it consists entirely of information that is common property and contains no original authorship.
The following pages on Schools Wikipedia link to this image (list may be incomplete):

Metadata

More information

SOS Children aims to make Wikipedia suitable for young learners. SOS Childrens Villages believes that a decent childhood is essential to a happy, healthy. Our community work brings families new opportunities through education, healthcare and all manner of support. Will you help another child today?